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Abstract—The seismocardiogram (SCG) is a
noninvasively-obtained cardiovascular bio-signal that has
gained traction in recent years, however is limited by its
susceptibility to noise and motion artifacts. Because of
this, signal quality must be assured before data are used
to inform clinical care. Common methods of signal quality
assurance include signal classification or assignment of a
numerical quality index. Such tasks are difficult with SCG
because there is no accepted standard for signal morphol-
ogy. In this paper, we propose a unified method of quality
indexing and classification that uses multi-subject-based
methods to overcome this challenge. Dynamic-time feature
matching is introduced as a novel method of obtaining the
distance between a signal and reference template, with this
metric, the signal quality index (SQI) is defined as a function
of the inverse distance between the SCG and a large set of
template signals. We demonstrate that this method is able
to stratify SCG signals on held-out subjects based on their
level of motion-artifact corruption. This method is extended,
using the SQI as a feature for classification by ensembled
quadratic discriminant analysis. Classification is validated
by demonstrating, for the first time, both detection and
localization of SCG sensor misplacement, achieving an
F1 score of 0.83 on held-out subjects. This paper may
provide a necessary step toward automating the analysis
of SCG signals, addressing many of the key limitations and
concerns precluding the method from being widely used in
clinical and physiological sensing applications.

Index Terms—seismocardiography, cardiac monitoring,
signal quality, time warping, ensemble voting.

I. INTRODUCTION

THE gold standard for assessing bio-signal quality is an
expert determination of whether the captured waveform is

usable for its intended purpose. This already subjective task has
been complicated by the proliferation of robust signal process-
ing algorithms, which are able to extract data in the presence
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of noise. Consequently, clinical decision-makers now face a
dilemma: how can we be certain that a bio-signal is of suffi-
ciently high quality to be processed before this information is
used to inform patient care?

One field that is substantially impacted by this problem is seis-
mocardiography. Seismocardiogram (SCG) signals are wave-
forms captured with accelerometers and gyroscopes measuring
vibrations of the chest wall in response to cardiac cycle events
[1]. The contraction of heart musculature and subsequent blood
flow yields signal features that correlate strongly with hemo-
dynamic indicators such as pre-ejection period (PEP) [2], [3].
Because of this, SCG has shown potential to play an important
role in outpatient cardiovascular monitoring [4], [5].

A major limitation of SCG for outpatient continuous mon-
itoring is its sensitivity to noise due to motion artifacts [6].
Furthermore, the patient-specific nature of SCG due to physio-
logical variability has made it difficult to identify a prototypical
waveform [7]. This factor in particular makes it difficult to de-
termine waveform quality before processing.

The ultimate goal of this work is to develop a flexible method
for quality assurance of SCG signals that may be applied early
in the processing pipeline to characterize the signal and obtain
a beat-by-beat quality assessment. The concept of the proposed
signal quality assessment module (QAM) is shown in Figure 1.
The module is composed of two subparts: (1) a set of classifiers
which identify categorical properties of the signal and (2) a sig-
nal quality index (SQI), which is a numeric indicator of general
signal quality. The purpose of the classifiers is to identify prop-
erties of the source distribution of the signal, which are factors
such as the patient’s activity or physiological state that may in-
fluence the SCG signal. This also includes factors external to
the patient such as the environment or sensing system configura-
tion, as will be explored in this work. By including a diverse set
of such classifiers, one can obtain a holistic view of the signal,
using it to determine whether processing should continue based
on the error tolerance of the system. Since changes in the source
distribution may not manifest as changes in general signal qual-
ity, and vice versa, the SQI is obtained as an additional metric
on which to base a decision of whether or not to use the signal.
Notably, this method would allow an investigator to fully tailor
the QAM to their needs by selecting the most suitable classifiers
and signal quality cutoffs.

In this work, we demonstrate the feasibility of such a QAM by
presenting a novel, unified method for performing both quality

2168-2194 © 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Emory University. Downloaded on September 25,2021 at 17:44:06 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0003-1567-4895
https://orcid.org/0000-0002-3241-6823
https://orcid.org/0000-0001-7333-005X
https://orcid.org/0000-0001-9541-529X
https://orcid.org/0000-0002-7544-5974
https://orcid.org/0000-0002-7952-1794
mailto:zia@gatech.edu
mailto:jacob.kimball@gatech.edu
mailto:shersek3@gatech.edu
mailto:mobashir.shandhi@gatech.edu
mailto:bsemiz@gatech.edu
mailto:omer.inan@ece.gatech.edu
mailto:omer.inan@ece.gatech.edu


ZIA et al.: UNIFIED FRAMEWORK FOR QUALITY INDEXING AND CLASSIFICATION OF SEISMOCARDIOGRAM SIGNALS 1081

Fig. 1. Proposed quality assessment module. A set of signal classifiers identify properties of the SCG’s source distribution, while a SQI computes
general signal quality. This information is synthesized to determine whether a signal can be processed, with high-quality segments being used to
inform clinical decisions, and information about the signal’s source distribution used to deliver feedback to the patient, such as a warning of sensor
misplacement.

indexing and classification of SCG signals from healthy sub-
jects, even in the absence of a prototypical reference standard.
To do so, we first define the SQI as a function of the inverse
distance between the signal and a diverse set of reference tem-
plates, demonstrating its ability to stratify SCG signals based
on their level of corruption with motion artifacts. As the perfor-
mance of this SQI fully depends on the distance metric used, we
introduce dynamic-time feature matching (DTFM) as a novel
method of distance estimation, characterizing its improved per-
formance for SCG quality indexing and classification compared
to dynamic time warping (DTW), a ubiquitous method for bio-
signal distance estimation. This SQI is compared against visual
scoring, the current gold-standard. To perform signal classifi-
cation, we extend this method by obtaining the SQI of a signal
against diverse sets of reference signals, using the SQI as a fea-
ture for classification with ensembled quadtratic discriminant
classifiers. To validate this method, we demonstrate the ability
to both detect and localize SCG sensor misplacement on held-
out cross-validation, a difficult classification task that had not
yet been achieved. Together, these results support the potential
for a unified, generalizable method of SCG quality assessment.

Prior work in SCG processing has focused on identifying
and extracting fiducial points in the signal in the presence of
noise, and thus few methods of signal quality assessment have
been proposed. Because of this, manual annotation remains the
gold-standard when validating signal analysis algorithms such
as in [8]. Both [9] and [10] use feature extraction and outlier
removal to eliminate low-quality signals, however such methods
rely on accurate and consistent feature extraction to begin with,
which may be intractable in noisy environments. In contrast,
[11] proposes a SQI based on the relative signal power during
the first and second heart sounds (S1 and S2). While the time-
frequency characteristics of SCG are well-defined [12], they
may not be informative about changes in waveform morphology.
Notably, there has been significant work in pre-processing SCG
to obtain valid signals, including signal decomposition [13],
sensor fusion [14], [15], and averaging several beats to smooth
noise [6]. Signal quality assessment is intended to supplement
these methods, working synergistically to improve the quality
of data.

The contributions of this work to current research include:
1) Introducing DTFM as a robust alternative to traditional

DTW for SCG quality indexing and classification
2) Achieving consistent signal quality determination when

the prototypical signal is poorly-defined
3) Detecting and localizing SCG sensor misplacement with

ensembled quadratic discriminant classifiers
4) Unifying SCG quality indexing and classification to en-

able robust, generalizable QAMs.

II. METHODS

A. Experimental Protocols

Data from two experimental studies were used in this pa-
per, both conducted under a protocol approved by the Georgia
Institute of Technology Institutional Review Board.

1) Protocol 1: The first study—which will be used to as-
sess the proposed SQI in the presence of motion artifacts—is
described in detail in [16]. This study was intended to identify
changes in SCG signals corresponding to changes in PEP and
included 17 healthy subjects (10 male, 7 female; age 26.1± 4.1
years; weight 66.1 ± 13.6 kg; height 168.2 ± 8.9 cm) with no
known history of heart disease. Along with a reference electro-
cardiogram (ECG) and impedance cardiogram (ICG), a three-
axis accelerometer and gyroscope were placed on the subject’s
sternum to collect SCG waveforms. (Note that in the literature,
the gyroscope-based measurements from the sternum may also
be referred to as gyrocardiography, or GCG, signals [17].) The
study consisted of four parts, in sequence. First, the subject
stood upright and motionless for a five-minute rest period. This
was followed by three minutes of walking at 4.83 kilometers per
hour on a treadmill and 90 seconds of a squatting exercise. The
exercise period was followed by a five-minute recovery period
during which the subject again stood upright and motionless.
Since the reference ECG for one of the subjects was corrupted,
data from the remaining 16 subjects was used.

2) Protocol 2: The second study—which will be used to
assess detection and localization of sensor misplacement—is
described in detail in [18]. The study included 10 healthy
subjects (5 male, 5 female; age 24.7 ± 2.3 years; weight
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Algorithm 1: SCG Template Generation.

1: procedure GENERATETEMPLATE(S )
2: t← s1 �Set first signal segment as template
3: for si ∈ {s2 . . . sm} do �For each signal segment
4: Compute offset of maximum cross correlation:
5: τ� ← argmaxτ

∑N
n=−N t(n)si(n− τ)

6: s� ← si(n− τ�) �Align signals
7: t← mean(t, s�) �Update template

70 ± 10.5 kg; height 170 ± 11.6 cm) and was performed on
two consecutive days. On the first day, accelerometers were
placed in each of three locations: mid-sternum, 7.5 cm to the
right, and 7.5 cm to the left. The subject stood motionless for
60 seconds followed by 60 seconds of a stepping exercise, after
which there was a five-minute recovery period during which
the subject again stood motionless. This method was repeated
on the second day, with the sensors instead being placed on
the mid-sternum, 5 cm above, and 5 cm below. ECG and ICG
reference signals were also collected.

B. Signal Pre-Processing

Data from both studies were processed in the same manner.
ECG and SCG signals were filtered with a finite impulse re-
sponse (FIR) band-pass filter with Kaiser window, both in the
forward and reverse directions to offset phase shift. Cutoff fre-
quencies were 1–40 Hz for SCG and 0.5–40 Hz for ECG. SCG
signals were then segmented into separate intervals for each
heartbeat by using thresholded peak detection to detect R-peaks
on the reference ECG.

C. Generating Reference Templates

Much of this study relies on creating representative
examples—called “templates”—of SCG signals based on sets
of heartbeat-segmented waveforms. A standard method of gen-
erating templates is “Woody’s algorithm” [19], which builds
on simple ensemble averaging by iteratively aligning and av-
eraging signals in a set S = {s1 , s2 , . . . , sm} to produce a
template t as shown in Algorithm 1. This property of Algorithm
1 is a clear benefit over ensemble averaging. With ensemble
averaging, transient changes—and resulting non-uniformity—
in signal morphology may reduce the quality of the resulting
template.

The primary factor affecting the performance of a template
is the quality of signals used to create it. For this reason, only
SCG signals collected during resting periods were used to gen-
erate templates. In contrast, the value of m in Algorithm 1 does
not greatly affect template performance; therefore, all available
resting period segments were used to generate templates for
each subject.

D. Overview of the DTW Algorithm

DTW is a method of estimating the distance between two sig-
nals that may be stretched or compressed relative to one another
in time [20]. This property makes DTW well-suited to compare

cardiac bio-signals, which may be compressed in time due to
changes in heart rate and other hemodynamic factors. Prior
work has utilized the DTW distance between ECG signals and
reference templates as a feature for classifying ECG segments
[21]–[23]. The principle behind such methods is that a signal
from a certain source distribution will have a lower DTW dis-
tance to templates from the same source distribution than from
others. Beyond ECG, DTW has also been used in motion anal-
ysis, including gait classification [24] and small gesture recog-
nition [25]. As SCG is a cardiac signal describing mechanical
motion, there exists precedent for applying DTW to SCG [13].

In general, DTW stretches and compresses the two signals
in time such that the Euclidean distance between the resultant
signals is minimized [26]. It does this by identifying a mapping
of points in one signal to corresponding points in the other,
as shown in Figure 2(a). In the example, when a point in the
signal is mapped to several points in the template (shown by
blue shaded points in the matrix), this represents stretching of
the signal relative to the template. Alternatively, when several
points in the signal are mapped to a single point in the template,
this represents relative compression of the signal. By extension,
if points have a 1:1 mapping, no stretching or compression
occurs. The resultant mapping is known as the “warp path”, as
it describes the warping of the signals in time.

The DTW warp path is subject to several fundamental con-
straints [27]. These include:

1) Boundary Conditions: The path must begin and end at
opposite diagonal corners of the matrix.

2) Continuity: Given a point in the warp path, valid
points for continuing the path include only adjacent (and
diagonally-adjacent) cells in the matrix.

3) Monotonicity: The warp path must proceed between the
diagonal boundary points without doubling back on itself,
either vertically or horizontally.

In most applications, the warp path is subject to additional
constraints, the most common being limiting the warping path’s
allowable deviation from the diagonal (illustrated as the gray
shaded squares in Figure 2(a)). Together, these constraints help
prevent the generation of absurd mappings.

E. Overview of the DTFM Algorithm

Implicit in the mapping generated by DTW are assumptions
about time-series feature correspondence—namely, local min-
ima and maxima—as shown in Figure 2(a). Since SCG wave-
forms are highly prone to motion-artifact noise, the assumptions
made by DTW in order to minimize the Euclidean distance may
distort the true relationships between these features and ulti-
mately underestimate the true distance between the signals.

To correct this limitation, we begin from the assumption that
any valid mapping between an SCG signal and a template will
necessarily match each feature in the template to a correspond-
ing feature in the signal whenever possible. Because SCG is
highly prone to motion artifacts in ambulant subjects, the num-
ber of features in the signal will exceed the template in the vast
majority of cases. Figure 2(b) illustrates the DTFM method,
which modifies the DTW algorithm to meet this assumption by
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Fig. 2. (a) The traditional DTW algorithm, showing the warp path (blue), 1:1 correspondence path (gray), and required points (black). Blue dotted
lines show features brought into alignment after warping. (b) The DTFM algorithm. Square shading indicates candidate points (black), prohibited
points (crossed), locations of time-series features (gray), selected path (green), and path from normal DTW (blue). Valid warp paths are shown as
solid lines, blue for sub-optimal and green for optimal. In this example, the third maximum in the signal is determined to be aberrant, and the third
minimum in the signal is mapped to the second minimum in the template.

imposing additional constraints on the warp path, supplement-
ing the fundamental constraints. The algorithm performs the
following:

1) Feature Identification: All local minima and maxima
in the signal and reference template are identified. In the
example, the rows and columns of the warping matrix
corresponding to timestamps of the signal and template
features respectively are shaded in gray. Points lying at
the intersection of these rows and columns are referred
to as “intersection” points; passing the warp path through
intersection points results in matching a feature in the
signal to a feature in the template.

2) Point Restriction: Next, prohibited intersection points in
the warping matrix are identified, as shown with crossed
squares in the example. A point in the grid is prohibited
when passing the warping path through that point would
result in either (1) matching a local minimum to a local
maximum or (2) stretching the feature in the signal or
template beyond some pre-defined limit.

3) Path Selection: Once all prohibited points are removed,
remaining intersection points are denoted as “candidate”
points, shaded in black in the example. As aforemen-
tioned, DTFM seeks to match all template features with a
signal feature whenever possible; thus, valid warp paths
are those that pass through a candidate point associated
with each template feature whenever it is possible to do
so—namely, whenever (1) the feature has correspond-
ing candidate points and (2) doing so would not violate
pre-existing constraints. The optimal path is then chosen
as the valid path that minimizes the Euclidean distance
between the warped signals.

Since there generally exists only one optimal warp path be-
tween any two points in the matrix—as defined by minimiz-
ing Euclidean distance—the set of valid warp paths is small
in number. Therefore, it is possible to implement rapid, ef-
ficient methods of identifying all valid paths. An example
pseudocode implementation is shown in Algorithm 2. In this

Algorithm 2: Identifying Valid Warp Paths.
1: procedure VALIDPATHS

2: F � set of all template features
3: B � set of initial points of warp path segment
4: P � set of valid warp path segments
5: B ← starting grid point p0
6: for fk ∈ F do
7: C ← candidate points for fk

8: if |C | > 0 then
9: for all valid pairs (bi, cj ), bi ∈ B, cj ∈ C do

10: Get path between grid points with DTW
11: P ←P ∪ {DTW(bi , cj )}
12: C � ← valid candidate points, C � ∈ C
13: B ← C � �Update segment starting points
14: Get paths between candidates and ending point pe

15: for bi ∈ B do
16: P ←P ∪ {DTW(bi, pe)}
17: P� ← continuous paths in P �Valid warp paths

procedure, the DTW warp path segments between each pair
of valid candidate points (points between which valid paths
exist) are recorded. Subsequently, all resulting continuous, grid-
spanning paths composed of these individual segments are re-
turned as valid warp paths. This is the DTFM procedure used to
generate the results in following sections.

Time-domain feature matching in DTW is a byproduct of
Euclidian distance minimization rather than an explicit goal of
the algorithm as with DTFM. In the following sections, we will
show that this property of DTFM improves its performance for
quality indexing and signal classification.

F. SQI Using Distance From Reference Template

The proposed SQI in this work is a function of the in-
verse distance between a captured signal and a reference tem-
plate, shown in Equation (1). Though any of myriad distance
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estimation methods can be used for this purpose—the quality
of which determines the performance of the SQI—in this study
we use either the DTFM or DTW distance.

SQI (s, t) � exp
(−λD (s, t)

L(s, t)

)

(1)

where s and t are the captured signal and reference template
respectively, D(·) is the distance function, L is the length of
the warped signal, and λ is an optional distance penalty. This
definition of a SQI matches intuition: unit SQI is achieved when
there is no distance between the signals, and it approaches zero
exponentially as the sample-averaged distance increases. Since
the length of signals after warping may vary, L is intended to
normalize the D by the length of the signal, yielding a distance-
per-datapoint. λ determines the decay rate of the exponential
term and thus only influences the range in [0, 1] in which scores
commonly fall. In this study, we arbitrarily fix λ to 25 for all
trials—as long as this value is chosen consistently, its effect
on SQI stratification for different distance metrics is otherwise
negligible.

Note that the reliability of the SQI is highly dependent on
the quality of the template—since there is no reference stan-
dard for SCG, using a single template may not yield a valid
SQI for all patients. Consider instead the set of templates
T = {t1 , t2 , . . . , t|T |}. We can then define the SQI over the
template set T as

SQI
T

(s) � 1
|T |

∑

t∈T

SQI (s, t) (2)

where |T | is the number of elements in set T . By increasing
the size and diversity of the template set, Equation (2) becomes
a more reliable SQI, as will be shown in the following sections.

Using a population approach addresses the problem of deter-
mining the quality of the templates themselves. This task may
be intractable both due to the lack of an objective reference
standard and because template quality may vary situationally.
As the number and diversity of templates increase, the influence
of low-quality templates is averaged and thereby diminished,
while representative templates may drive the overall SQI higher
or lower. This improves SQI stability without incorporating sub-
jective assumptions about template quality. Notably, scaling the
score of each template by a static value—related to its quality,
for instance—would not change SQI performance; though the
final value may change, relative scores assigned to the signals
would remain consistent, as all scores are equally affected by
scalar weights.

G. Evaluation of Proposed SQI

Evaluation of the SQI of Equation (2) will be performed both
qualitatively and quantitatively.

1) Qualitative: As a visual example of how the SQI stratifies
signals based on quality, we will show that the DTFM-based
SQI visibly stratifies signal segments taken from the subjects’
different activity levels in Protocol 1, namely rest, exercise-
recovery, squatting, and walking. These activities are listed in
increasing order of typical SCG corruption; a valid SQI should

therefore stratify scores for these levels such that an investigator
may accurately discern signal corruption.

SQI scores were calculated using a held-out method. 16 tem-
plates were first generated from the resting period segments
of each of the 16 subjects. For each held-out subject S, the
template set TS was generated using the 15 templates from
held-in subjects: TS = {ti}, i ∈ [1, 16], i �= S. For each sig-
nal segment si belonging to subject S from all activity types,
the SQI was then calculated as per Equation (2) using template
set TS .

Once SQIs were obtained, the top 2%, bottom 2% and mid-
dle 50th percentiles of SCG segments were identified according
to the DTFM-based SQI for one of the subjects in Protocol 1
during each of the rest, exercise, and exercise-recovery periods.
These results will demonstrate that the SQI goes beyond sim-
ple activity recognition by identifying high- and low- quality
segments during each activity type.

2) Quantitative: To analyze the performance of the SQI with
increasing template set size, we perform the following method
for each set size n, n ∈ [1, 15]. For each subject S, we first chose
n template sets at random from the 15 held-out sets to form the
truncated set T

{n}
S . This set was then used to compute the SQI

of Equation (2) for all segments si belonging to subject S. Once
this process was repeated for all 16 subjects, the scores for all
subjects were combined into four vectors, one for each activity
level.

To determine whether there was significant stratification
present between SQIs for the four activity levels, and to what
extent, the Friedman test was used [28]. The Friedman test is
a non-parameteric test for determining the separation amongst
data from different classes. Generally, a larger Friedman test
statistic denotes higher separation between the levels, however
it does not give insight into pairwise separation. To obtain this
insight, we applied post-hoc analysis by using a Wilcoxon rank-
sum test. As described in [28], this test returns the probability
(p-value) that the separation between each pair of levels was
achieved by chance. In this study, a p-value of less than 0.05
indicates statistical significance.

Since there may be numerous ways to select a subset of the 16
templates for each set size n, many combinations of templates
were sampled at each step, up to 1000 combinations (not all
set sizes had a large number of available combinations). This
yielded up to 1000 trials for each n, with the Friedman and
pairwise test results recorded for each trial. The process was
performed twice, once using each distance metric.

H. Visual Scoring of SCG Segments

Visual scoring of the SCG segments was performed to com-
pare against the SQI. To do so, 10 annotators with experience
processing SCG signals were asked to assign signal segments a
score of 0 (worst) to 1 (best) based on their quality. To aid in
consistency, the following heuristics were provided:

1) If the impulses likely corresponding to both AO and AC
are clearly visible, score greater than 0.75.

2) Otherwise, if either impulse is clearly visible, score
greater than 0.5 but less than 0.75.
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3) Otherwise, if either impulse is somewhat visible, score
greater than 0.25 but less than 0.5.

4) Otherwise, score less than 0.25.
Annotators were encouraged to supplement these heuristics

with their own judgment to determine the precise score. The an-
notators were assigned 1000 randomly-selected signal segments
from the dataset, evenly-selected from each activity level. The
final score for each segment was the sample mean of the avail-
able annotators’ scores, as before.

These scores were analyzed using the same method as de-
scribed in the previous section; specifically, the Friedman test
with Wilcoxon rank-sum post-hoc testing was used to determine
overall and pairwise score stratification. To visualize the effect
of the number of human annotators on score stratification—as
with the SQI—this analysis was performed using subsets of the
annotators with increasing size, from 1 to 10. For each set size,
the test statistics were computed using scores from all possible
combinations of annotators.

Finally, to assess whether the above heuristics for manual an-
notation were reflected by the automated SQI, the SQI assigned
to each segment using all 15 template sets was plotted against
the average score given to each segment by the 10 annotators.
Using linear regression, a single best-fit line was generated for
this data, and the R2 value of the linear fit was determined for
each activity level. As detailed in [28], R2 is the ratio of the
variance explained by the linear fit relative to the total variance;
a higher R2 thereby indicates a stronger relationship between
the two scores.

I. Signal Classification With Ensemble Voting

To determine an appropriate classifier for SCG signals, we
start with the assumption that signals drawn from a source
distribution—or class—will generally receive a higher SQI
from templates created from the same class compared to oth-
ers. If this assumption always held true, classification would
be quite simple: given N classes, we define a template set
T = {t1 , t2 , . . . , t|T |}where ti is a template created from sig-
nals from the ith class. Classifying the input signal s could be
determined by

C�
T (s) = argmax

i
SQI (s, ti) (3)

where C�
T (s) is the class of s predicted by template set T .

The selected class is therefore the value of the argument i which
maximizes the SQI. In reality, since there is no known prototyp-
ical SCG signal, the classifier C�

T may not generalize well due
to its high dependence on template quality.

One way to compensate for template quality variability is to
determine the prior likelihood of the template to give a certain
SQI to signals from each class. To do this, we re-frame the
classification problem in Equation (3) as

CT (s) = argmax
i

PY |X (Y = i | X = x) (4)

PY |X is the probability that the true class of s is Y given the
vector x of SQIs assigned to the signal by the template set.

Using Bayes’ rule, Equation (4) is equivalent to

CT (s) = argmax
i

PX |Y (X = x | Y = i)PY (Y = i)
PX (X = x)

= argmax
i

PX |Y (X = x | Y = i) (5)

since we are given x, and we assume that all classes are
equiprobable. This probability distribution may be learned based
on training data, a technique called Bayes estimation. The learn-
ing process may be greatly accelerated by imposing assumptions
on the probability distribution; among the most common types
are linear discriminant analysis (LDA), in which the distribu-
tions are assumed to be Gaussian with fixed covariance across
classes; and quadratic discriminant analysis (QDA), in which the
covariance restriction is lifted [29]. In this work, we utilize QDA
in order to model potential relationships between templates in a
set.

Even with Bayesian methods, accurate classification with
Equation (5) still relies on the quality of the template set, and
thus CT is a weak classifier. However, predictive performance
of this method may improve by using ensemble prediction. En-
semble prediction is a robust technique whereby several weak
classifiers act in unison to generate stronger predictions [30].
Ensemble methods have long been applied to cardiac signal pro-
cessing, especially ECG [31]–[35]. As predictive performance
of an ensemble classifier relies on diversity of its members,
methods such as bagging and boosting are often employed dur-
ing training. In this work, diversity was induced by increasing
the number of template sets, and thus no boosting or bagging
methods were used. Once the classifiers are trained, their indi-
vidual predictions are combined to produce one prediction from
the ensemble [30].

To apply ensemble prediction to this method, consider the
superset M composed of unique template sets such that M =
{T1 ,T2 , . . . ,T|M |} where |M | is the number of template sets.
After training each classifier as per Equation (5), we can obtain
a majority vote from the superset M on signal s as

VM (s) = mode
Ti ∈M

CTi
(s) , (6)

which returns the most common prediction across all templates
in set M . An overview of this method is shown in Figure 3. By
selecting diverse template sets—such as by constructing each
template set from a different subject’s data—the generalizability
of this model improves, becoming less sensitive to the quality
of any individual template. This property is valuable in SCG
processing, as quality templates are difficult to identify.

J. Evaluation of DTFM and DTW Algorithms

We will contrast the DTFM and DTW algorithms using both
qualitative and quantitative methods.

1) Qualitative: We will provide an example of how the
DTFM and DTW warp paths differ for a SCG signal segment
taken from the resting period of a subject in Protocol 1. The
optimal warp paths will be contrasted, along with the resultant
warped signals, showing differences in assumptions of feature
correspondence between the two methods.
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Fig. 3. Overview of ensemble voting with template sets. A template set
is composed of a group of templates, each derived from SCG signals
belonging to a different class. Each template assigns the incoming signal
a SQI. For each set, the SQI values are mapped to the most likely classi-
fication (accounting for variability in template quality), which represents
the vote of the template set. The final prediction is the mode class of all
template set votes.

2) Quantitative: We will show that the DTFM has a more
consistent, predictable response to added signal noise than
DTW. This gives DTFM the benefit of predictability—akin to
the �2-norm—while still being able to compare SCG signals
with varying phase. To do so, we begin by representing the
SCG signal as a windowed Fourier series. This offers a method
of modeling signal noise as a linear combination of windowed
sinusoids while still accurately modeling the SCG waveform.

Consider the template signal t ∈ RN and raw signal s ∈ RN

defined along a time interval τ , which is divided into L non-
overlapping, continuous windows {w�} such that

∑L
�=1{w�} =

τ . In this interval, t and s may be projected into Φ, the subspace
of RN defined by the Fourier series:

Φ := {φh(τ), h ∈ Z+} (7)

where

φh(τ) = θ
(1)
h cos(hτ) + θ

(2)
h sin(hτ). (8)

Thus, any vector x ∈ Φ in interval τ can be expressed as:

x =
L∑

�=1

H∑

h=1

φ
(θx )
h (w�) (9)

where H is the maximum harmonic order and x is parameter-
ized by θx :=

{
θ

(1)
x,h , θ

(2)
x,h

}H

h=1 . For simplicity, no offset term is
included in the Fourier series, without loss of generality. In this
study, both L and H are fixed to 8; that is, the signal is divided
into 8 windows of length 100 ms, and the maximum sinusoidal
frequency is 8 cycles per window. Note that this corresponds to
a frequency range of 10 Hz - 80 Hz. Though in this study, SCG

signals were low-pass filtered with a 40 Hz cutoff, prior work
has opted for cutoffs as high as 100 Hz [12], [36]. These values
of L and H were chosen to sufficiently illustrate patterns that
span the typical SCG frequency spectrum.

Upon projecting t and s into Φ to obtain tΦ and sΦ respec-
tively, the raw signal may be constructed by adding an error
vector, also in Φ, to the template. Therefore, sΦ = tΦ + eΦ ,
where eΦ is an error vector in subspace Φ. As per (9), eΦ can
be understood as a linear combination of windowed sinusoids
added to the template to obtain the raw signal.

It is shown in Appendix A that the �2-norm distance has the
desirable property that noise components at different time win-
dows and frequencies are equally-weighted in their contribution
to overall distance. However, since DTW is not a linear operator,
it does not share this property; rather, we will demonstrate exper-
imentally that the DTW operator demonstrates time-frequency
dependence. In contrast, we will also show that DTFM approxi-
mates the time-frequency independence of the �2-norm, making
it a more predictable method.

To model this dependence, 16 separate SCG templates were
generated according to Algorithm 1, using data from the resting
period of each of the 16 subjects in Protocol 1. These subject-
specific templates were projected in to the subspace Φ such that
each template was parameterized by coefficients θi , i ∈ [1, 16].
Synthetic signals were formed by first adding a random vector
of error parameters θe to θi such that

θ̂ = θe + θi . (10)

Each element in θe was generated by a uniform distribution in
range [0,1]. The updated coefficients were then reconstructed
using the Fourier series to obtain a synthetic signal as follows:

rΦ = F (θ̂) (11)

where F is the Fourier series operator. After generating R =
160, 000 synthetic signals (10,000 from each of the 16 tem-
plates), the parameterizations {θe}R for the synthetic signals
were used to construct the row matrix Θe ∈ RR×P where P is
the number of parameters. These parameters were mapped to
the corresponding distance between the synthetic signal and its
respective template, given by d ∈ RR×1 . The mapping x is the
least-squares estimate that satisfies

x = argmin
x
‖d−Θex‖22 . (12)

This mapping represents the contribution of each error param-
eter to the overall computed distance. After performing this
method for both DTW and DTFM distance metrics, the coef-
ficients in each window and frequency were averaged (corre-
sponding to the sine and cosine components).

K. Evaluation of Ensemble Classifier

The classifier of Figure 3 was used to detect and localize
sensor misplacement using the dataset from Protocol 2. This
task was attempted in [18] using random forest classification on
extracted features to detect, but not localize, SCG misplacement.
Since the SCG sensor was placed in five different locations, this
is a five-class classification problem. We denote these locations
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as C (center), L (left), R (right), T (top), and B (bottom).
As described in [18], a sensor is misplaced whenever it is not
located in C.

To demonstrate the performance of the classifier of Figure 3
on held-out subjects, we began by constructing 10 subject-
specific template sets, one for each subject in Protocol 2. Each
template set was composed of five templates, generated with
Algorithm 1 from the subject’s resting-period segments from
each of the five accelerometer positions. Note that because the
center position in the protocol was tested on two separate days
for each subject, data from both days was combined for tem-
plate generation and validation. Thus, the template set for each
subject S was TS = {ts

C , ts
L , ts

R , ts
T , ts

B }. These template sets
were then combined into a superset M = {T1 ,T2 , . . . ,T10}.

Next, the following was performed for each held-out sub-
ject S. A new superset MS was defined, composed of only
held-in subjects, such that MS = {Ti}, i ∈ [1, 10], i �= S. To
use this superset for classification purposes, we first charac-
terized the prior distributions of each of the 9 held-in sets as
per Equation (5). This distribution was modeled as a multi-
variate Gaussian such that the ith template set had a 5 × 5
matrix of means μi and one 5 × 5 covariance matrix per class
Σi = {ΣC

i ,ΣL
i ,ΣR

i ,ΣT
i ,ΣB

i }. This setup is analagous to treat-
ing each set as a separate QDA classifier [29].

For each set Ti in MS , these parameters were learned by
obtaining the SQI for each template ti

j , j ∈ {C,L,R, T,B},
against all resting-period segments from held-in subjects us-
ing Equation (1). μi was then calculated as the mean score of
each template ti

j for each class; each element in Σi was cal-
culated as the covariance of SQIs between the five templates
in Ti for each class, respectively. Once the prior distributions
were estimated, predictions were generated for all segments for
subject S using superset MS as per Equation (6). This process
was performed twice, once using DTW and once using DTFM
as distance metrics. Note that because diversity in the model
is driven by template variation, methods of selecting training
data such as bagging and boosting were not used in this study.
The prediction and target values for each subject were combined
into a confusion matrix to show held-out predictive performance
across the 10 subjects.

The nature of this task allows for multiple observations to be
considered for each prediction. Intuitively, if the classifier pre-
dicts the correct location more often than any single incorrect
location, incorporating more data into each decision increases
the likelihood of correct prediction. Extending this intuition,
given a column-normalized confusion matrix, where columns
represent the true class and rows represent the predicted class,
classification error will converge to 0 as datapoints per predic-
tion increase if the mode of each column is located on the matrix
diagonal.

To model this heuristic and determine the number of obser-
vations necessary to assure high performance, we upper-bound
the probability of prediction error Pe given the confusion ma-
trix of the classifier as a function of the number of observations
per prediction B. Appendix B describes the formulation of this
upper-bound, which will be used to evaluate the relative perfor-
mance of each classifier.

Fig. 4. (a) Template signal (black) and raw signal (red) before warp-
ing. Five peaks from each signal that likely correspond were chosen by
visual inspection and are connected by dashed lines. (b) Warping paths
from DTW (green) and DTFM (blue) plotted against 1:1 correspondence
line (black, dashed). Sub-optimal (square, empty) and optimal (square,
shaded) candidate points are indicated, with the candidate points cor-
responding to the five features in (a) being indicated by black circles.
(c) Template signal (black) and raw signal (green) after DTW. The new
locations of the five corresponding points from (a) are connected by
dashed lines. (d) Template signal (black) and raw signal (blue) after
DTFM. The new locations of the five corresponding points from (a) are
connected by dashed lines. Peak mismatches caused by DTW are indi-
cated by the dimension lines in (b) and (c). Relative importance of noise
components in predicting distance estimation by DTW (e) and DTFM (f).
Harmonic frequency refers to the number of periods per window of the
sinusoidal noise.

Predictive performance was analyzed as a function of the
number of template sets (n = [1, 9]) and number of signal seg-
ments per prediction (m = [1, 9]). The former was achieved
by limiting the size of MS , selecting a random subset of size
n on which to perform the analysis. The latter was achieved
by selecting m segments at random from a random class for
the held-out subject, predicting the class by returning the most
common prediction over the m segments. For each subject, this
process was performed 100 times for each of 81 pairs of values
(m,n).

To compare results with [18], F1 scores were obtained for
binary detection. Namely, the five-class problem was reduced
to a two-class problem, where predictions and targets took the
form C and C̄, where C̄ � {L,R, T,B}. The F1 score was then
calculated as

F1 =
[

2PR

P + R

]

, P =
[

TP
TP + FP

]

, R =
[

TP
TP + FN

]

,

(13)
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Fig. 5. (a) Stratification of SCG signals using the DTFM-based SQI for a single subject. The columns from left to right show SCG intervals taken
from rest, recovery, and exercise respectively. The top row corresponds to the top 2% of signals in each category based on their SQI; the middle
rows correspond to the 50th percentile; and the bottom row corresponds to the bottom 2%. The correlation between scores assigned by manual
annotation and the DTFM-based SQI are shown for the (b) rest, (c) recovery, (d) squatting, and (e) walking activity levels. The best-fit line for these
scores is shown (black, dotted), with the corresponding R2 of the fit overlaid. For visual purposes, SQI scores were normalized to the range [0, 1].

where P is precision, R is recall, TP are true positives, FP are
false positives, and FN are false negatives. The F1 scores were
calculated and recorded for each pair (m,n) across all trials and
held-out subjects. The average F1 score was obtained for each
pair (m,n) by averaging all recorded scores corresponding to
each pair.

III. RESULTS AND DISCUSSION

A. Qualitative Evaluation of DTFM and DTW

The time-warping results for a resting-period segment in Pro-
tocol 1 are shown in Figure 4(a)–(d). Most notably, there are
two deviations in the DTW warp path—indicated with dimen-
sion lines in Figure 4(b)—that bring two major peaks of the
SCG signal out of alignment with the template, as shown in
Figure 4(c). DTW instead brings the original signal peaks into
alignment with different peaks in the template, as this config-
uration minimizes the overall Euclidean distance. In contrast,
restrictions on the DTFM warp path reduce the likelihood of
peak misalignment by prioritizing feature matching over dis-
tance minimization. As shown in Figure 4(d), DTFM aligns
corresponding peaks in the warped signal.

Notably, there are many restrictions that may be placed on
the DTW warp path to reduce the likelihood of aberrant feature
matching, including strictly limiting the acceptable warp path
deviation from the straight-line fit. However, such restrictions in
turn minimize the benefit of using DTW over simpler distance
metrics such as the �2-norm, as it decreases the ability of DTW
to re-align off-set peaks. This property of DTW is essential when
there is appreciable heart rate variability, as peak locations may
shift with each subsequent sample. Besides requiring the warp
path to match features whenever possible, no additional con-
straints are imposed by DTFM, maintaining the generalizability
of the method.

B. Quantitative Evaluation of DTFM and DTW

The responses of DTFM and DTW to noise modeled as
windowed sinusoids are shown in Figures 4(e) and (f). These
signals were generated and analyzed using Equations 10–12.
Note that these values were normalized by performing element-
wise division of each point with the minimum value in the grid.
Figure 4(e) demonstrates that the DTW distance is more sen-
sitive to noise components at higher frequencies and at later
intervals of the SCG signal. This is likely because most of the
SCG signal energy is concentrated at lower frequencies early
in the signal, corresponding to aortic opening (AO) and subse-
quent systolic ejection. Thus, noise in this region is less likely
to encourage DTW to re-align peaks to minimize error. In con-
trast, Figure 4(f) shows that DTFM distance is equally affected
by noise in any signal segment and at any frequency, much like
the �2-norm.

This property of DTW is undesirable in two ways. First, sig-
nificant work in processing SCG signals focuses on AO point
identification, but the effect of noise in this region on the SQI is
relatively attenuated by DTW. Secondly, the response of DTW
to signal noise is difficult to predict since the change in DTW
distance with respect to individual noise components in non-
uniform. In contrast, the response of DTFM to noise compo-
nents is uniform, indicating that DTFM retains the predictability
of the �2-norm while having the additional benefit of aligning
corresponding features.

C. Qualitative Evaluation of SQI

Selected segments from one of the subjects in Protocol 1 are
shown in Figure 5(a). This result demonstrates that the SQI as
defined in Equation (2) is able to identify high- and low- quality
SCG segments when the subject is performing different activ-
ities. Compared to the top 2%, signals in the 50th percentile
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Fig. 6. (a) SQI scores for different activity levels using DTFM (blue) and DTW (green) as distance metrics and a template set size of 15. Scores
from visual scoring with 10 annotators are included (red). Scores from each method were normalized to the range [0, 1] for comparison of score
stratification. The boxes denote the 25th–75th percentile range and the whiskers denote the 5th–95th percentiles. (b) The test statistic from
performing the Friedman test on template sets of increasing size for DTFM (blue) and DTW (green). Standard deviation error bars are shown.
These are compared against the test statistic from visual scoring (red, dashed) with an increasing number of human annotators. (c) Pairwise
test results versus number of template sets used. Categories include rest (Rs), recovery (Rc), squatting (S), and walking (W). Shading indicates
statistically-significant separation (p < 0.05) with DTFM (blue), DTW (green), or both (yellow) as determined by the Wilcoxon rank-sum test. These
are compared against the pairwise results for visual scoring (red, dashed).

contain more noise in the first and second signal minima, which
are often extracted as AO point correlates. Though there is no
absolute reference standard for SCG, segments with higher SQI
appear more uniform than those with lower SQI, and the high-
energy oscillation in the first half of the signal—often associated
with the AO point and systolic ejection—is more clearly distin-
guishable.

This stratification of signal segments by SQI is an essential
component of the overall QAM system. Improving stratifica-
tion between activity levels better enables tailoring the quality
threshold based on the tolerance of processing algorithms.

D. Quantitative Evaluation of SQI

Figure 5(b)–(d) show the relationship between DTFM-based
SQI scores and those from visual manual annotation. Positive
linear relationships are apparent at all activity levels, though this
correlation is somewhat lower during walking. The results of this
figure suggest that the heuristics by which human annotators
scored the signal—including relative quality of features related
to AO and AC—were reflected by the DTFM-based SQI. This
follows intuition: since AO and AC generally yield high-energy
features in the signal, distance minimization algorithms would
incur a large penalty if these features were not identified and
matched between the signal and template.

The ability of the different quality indexing methods to
distinguish signals from different activity levels is shown in
Figure 6(a). As shown in the figure, DTFM more effectively
stratifies SCG segments taken during different activity levels
based on their SQI compared to DTW. This is especially
apparent between the rest and recovery periods, which DTW
ranks as higher quality, in opposition to the visual scoring
gold-standard. For this reason, the DTFM-based SQI produces
a stratification that is more congruent with visual scoring.

These results are reflected in Figure 6(b). Notably, all scoring
methods produce test statistics which are relatively high com-
pared to the chi-square critical value of 7.82 for 3 degrees of
freedom. Since the relative value of the test statistic is due to dif-
ferences in variance and not necessarily the validity of the scores

assigned by each method, Figure 6(b) does not suggest that one
method is better than the other. Rather, the result of interest is
that, for DTFM-based SQI, increasing the number of reference
templates or annotators increases score stratification. This sug-
gests that, though there is no reference standard SCG, there are
patterns on the population level which may be synthesized to
effectively assess a signal. Furthermore, the relative separation
when using DTFM increases compared to DTW as more tem-
plates are used, indicating that the addition of templates has a
greater marginal benefit for DTFM.

Figure 6(c) shows the results of Wilcoxon rank-sum testing
on the SQI scores across the four activity levels as the num-
ber of template sets is increased. Notably, using DTFM-based
SQI typically requires fewer template sets to achieve signifi-
cant separation between the pairs of activity levels compared
to DTW. As expected from Figure 6(a), separating scores from
rest and recovery periods was more difficult than distinguishing
rest from exercise period scores for all methods, with visual
scoring not achieving significant separation at all. DTW-based
SQI and visual scoring were also unable to significantly dis-
tinguish signals captured from different exercise levels, though
DTFM-based SQI achieved this with relatively few template
sets. Though this does not serve as an indictment of DTW or
visual scoring, it does suggest that DTFM may be a more appro-
priate SQI metric than DTW for identifying nuanced differences
in the SCG signal, supporting the observations shown in Fig-
ure 7.

E. Evaluation of Ensemble Classifier

Performance of the ensembled QDA classifier for SCG mis-
placement detection is shown in Figure 7. Notably, the DTW-
based classifiers had lower performance in correctly classifying
centrally-placed SCG sensors, leading to lower precision in de-
tection. This is likely due to the fact that, for each subject, data
for centrally-placed sensors was taken across two separate days,
as opposed to the other locations which were obtained on a sin-
gle day. This introduced variability in sensor placement—and
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Fig. 7. Confusion matrices for ensemble classification of signal mis-
placement using (a) DTW and (b) DTFM. Placement locations are center
(C), left (L), right (R), top (T), and bottom (B). The matrices are column-
normalized to highlight accuracy of predictions. The F1 scores for binary
classification (center or off-center) using (c) DTW and (d) DTFM are
shown below.

possibly the subject’s physiological state—within the class. In
contrast to DTW, DTFM-based classifiers were better able to
handle this variability.

SCG waveforms are, by nature, both transient and subject-
specific. This means that, across patients and across recording
sessions, subjects’ baseline SCG morphology may change. Per-
forming held-out cross validation addresses this factor; with
this method, predictions of sensor position did not incorporate
knowledge of the subjects’ baseline, prototypical SCG wave-
form. An implication of these results is that, even with such
diverse waveforms in the training set, stereotyped changes in
morphology existed with each sensor position.

Figures 7(c) and (d) show the F1 scores for misplacement
detection as a function of the number of template sets used
by the classifier and number of SCG segments used for each
prediction. For DTFM-based classifiers, performance improved
with more template sets and segments per prediction. The for-
mer is because, as previously demonstrated, SQI performance
generally improves with the number of reference templates; the
latter is because, as long as the classifier predicts the correct
location more often than any single incorrect location, incorpo-
rating more data into each prediction increases the likelihood
of correct prediction. Performing the analysis from Equation
(20) on the confusion matrices of Figure 7(a) and (b) yields
the results in Figure 8. Since the probability of prediction error
for DTW is bounded away from 0 due to misclassification of
centrally-placed SCGs, overall performance does not improve
despite improvements when predicting the remaining classes.

The error-bounding of Figure 8 is significant because the use-
case of misplacement detection allows for the assumption that
more than one segment may be used per prediction. Thus, if
the confusion matrix for a given classifier is generalizable to

Fig. 8. Probability of prediction error given the confusion matrices in
Figure 7(a) and (b). The error probability using the DTW distance metric
is shown in green, with the shaded area representing the error range
across all sensor locations and green lines representing the error for
individual locations. The error probability using DTFM is shown in blue,
with the shaded area representing the error range and blue lines showing
location-specific error. The black dotted lines correspond to the mean
error probability across locations. The outlier green line is associated
with detection of correct sensor placement.

held-out subjects, one may obtain a reasonable upper-bounded
prediction error for each class, using this to determine how many
segments to obtain. For binary classification, DTFM-based clas-
sifiers achieved an F1 score of 0.83; these results are comparable
to the F1 score of 0.82 achieved in [18] for the same task, though
held-out validation was not used in [18]. Furthermore, these re-
sults extend prior work by demonstrating the ability to localize
SCG misplacement as well, with diminishing error.

IV. CONCLUSION AND FUTURE WORK

In this work, we proposed a method of SCG signal quality
assurance based on quality indexing and classification. By using
population-based methods, these tasks were accomplished de-
spite having no standard baseline for SCG. Furthermore, the fact
that the results of this study were obtained using held-out vali-
dation has significant implications for using the proposed QAM
in ambulatory environments where there may not be an oppor-
tunity for subject-specific sensor calibration, or on low-power
devices where such learning is not possible.

Notably, the SQI and ensemble classifier presented in this
work derive from a unified method. Namely, the SQI of Equa-
tion (2) can be viewed as a special case of the ensemble classifier
of Figure 3, where each template set contains a single resting-
period template and the mean SQI is returned as a result. Uni-
fication of the traditionally disparate tasks of quality indexing
and signal classification is a key result of this work.

A driving force in biomedical informatics is the use of feature-
mining coupled with often highly-nonlinear models to perform
classification and regression tasks. For instance [18] extracted
26 signal features coupled with XGBoost classification to per-
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form SCG misplacement detection. In this work, the SQI is
used as the sole feature type in a linear QDA classifier, yielding
a method that is effective for this task while remaining intuitive
and interpretable. This result is essential because it not only il-
lustrates the broader potential of the SQI but also demonstrates
that robustness and interpretability are not necessarily incon-
gruent. For informatics as a whole, developing intuitive and
interpretive models as opposed to black-box systems is an im-
portant component in the eventual acceptance of these models
by the medical community.

Finally, an important implication of this work is the observa-
tion of population-level behavior of SCG morphology. While the
SCG is considered both patient-specific and transient, the ability
to classify sensor placement without user calibration suggests
that there exist high-level patterns in these waveforms despite
their stochastic nature. Future work should explore this result, as
it may eventually lead to more robust and generalizable methods
of analysis.

Regarding SQI assessment, this study only explored four
noise levels; to further validate generalizability of this method,
more noise levels should be tested, namely those encountered in
outpatient monitoring scenarios, for example noise due to cloth-
ing interference, speaking, and upper body movements. For sen-
sor misplacement, the dataset used in this study featured larger
displacements (5–7.5 cm) than may typically be encountered in
at-home settings, and only tested the four cardinal directions.
Future work should demonstrate the efficacy of this method for
more minute displacements and in different directions. A key
limitation of the ensemble classifier is that misplacement is de-
tected only during the resting period. While held-out validation
shows that this approach generalizes well, classification during
the resting period only is a limitation compared to prior work.
Future work should build on these results by validating this clas-
sification method against other source distributions of interest
in SCG processing.

APPENDIX A
PROOF OF TIME-FREQUENCY INDEPENDENCE OF �2-NORM

Consider the functions f : (RN , RN ) −→ R and f̂ :
(Φ,Φ) −→ R defined as f(a, b) = ‖a− b‖2 where a, b ∈ RN

and f̂(c,d) = ‖c− d‖2 where c,d ∈ Φ, the subspace defined
by the Fourier series. The true �2-norm η� between the template
t and raw signal s can thus be found as

f(t, s) = ‖t− s‖2 = η� . (14)

The true distance between the vectors may be estimated by
finding the �2-norm of the projections in Φ of the template and
raw signal.

f̂(tΦ , sΦ) = ‖tΦ − sΦ‖2 = η̂ (15)

It can be shown that η̂ and η� converge as the order number H
is increased. Since the norm operator is linearly separable for
orthogonal vectors, the estimated norm may be expressed as the

sum of its individual components.

f̂(tΦ , sΦ) = f̂(tΦ , tΦ + eΦ) = f̂(0Φ ,eΦ)

= f̂

(

0Φ ,
L∑

�=1

H∑

h=1

φ
(θe)
h (w�)

)

= η̂ (16)

where 0Φ is the zero vector in Φ and eΦ is the difference between
the raw signal and template. This shows that the �2-norm can be
expressed as an unweighted sum of individual noise components
at each time-window and frequency.

APPENDIX B
DERIVATION OF UPPER-BOUND FOR PREDICTION ERROR

Consider a column-normalized confusion matrix C ∈
RN×N , where each column represents the true class and each
row represents the predicted class. Thus, each element in C rep-
resents the probability pij of predicting class i when the true
class is j. Assuming all classes are equally likely to occur, we
express the probability of prediction error as

Pe(B) =
N∑

j=1

PX |Y (X �= j | Y = j)PY (Y = j)

=
1
N

N∑

i,j=1
i �=j

PX |Y (X = i | Y = j) (17)

where X is the predicted class and Y is the true class. This
is the probability that the predicted class is different than the
true class. Since the final prediction is defined as the mode of
predictions on each batch of observations, an error occurs if any
false class i is predicted more than any of the other classes. In
other words,

Pe(B) ≤ 1
N

N∑

i,j=1
i �=j

B∑

k=1

P (Sij (B) = k)
N∏

�=1
� �=i

P (S�j (B) < k)

(18)
where Sij (B) is the number of times the event X = i, Y = j
occurs over the course of B observations. This is an upper-bound
because the constraint that the number of observed events must
total B has been lifted. We further simplify this expression
by noting that each term in the product has a value in [0,1].
By definition, the result can never exceed the smallest term in
the product. In this case, the smallest term in the product is
P (Si� j (B) < k) where i� := argmaxi �=j pij . Thus, we further
upper-bound the probability of error by

Pe(B) ≤ 1
N

N∑

i,j=1
i �=j

B∑

k=1

P (Sij (B) = k)P (Si� j (B) < k). (19)

Finally, we observe that the probability of selecting a certain
class k times across B observations can be modeled as a bino-
mial distribution parameterized by the probability of selecting
the class X given the true class Y . We thus replace the probabil-
ity terms in the previous equation with the binomial probability
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density function:

Pe(B) ≤ 1
N

N∑

i,j=1
i �=j

B∑

k=1

β(k,B, pij )
k−1∑

�=0

β(�,B, p�
j ) (20)

where β(k,B, p) is the binomial PDF evaluated at k event oc-
currences over B observations with event probability p, and
p�

j := maxi pij .
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