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Abstract—The seismocardiogram (SCG) measures the
movement of the chest wall in response to underlying
cardiovascular events. Though this signal contains
clinically-relevant information, its morphology is both
patient-specific and highly transient. In light of recent
work suggesting the existence of population-level patterns
in SCG signals, the objective of this study is to develop
a method which harnesses these patterns to enable
robust signal processing despite morphological variability.
Specifically, we introduce seismocardiogram generative
factor encoding (SGFE), which models the SCG waveform
as a stochastic sample from a low-dimensional subspace
defined by a unified set of generative factors. We then
demonstrate that during dynamic processes such as
exercise-recovery, learned factors correlate strongly with
known generative factors including aortic opening (AO)
and closing (AC), following consistent trajectories in
subspace despite morphological differences. Furthermore,
we found that changes in sensor location affect the
perceived underlying dynamic process in predictable
ways, thereby enabling algorithmic compensation for
sensor misplacement during generative factor inference.
Mapping these trajectories to AO and AC yielded R2 values
from 0.81–0.90 for AO and 0.72–0.83 for AC respectively
across five sensor positions. Identification of consistent
behavior of SCG signals in low dimensions corroborates
the existence of population-level patterns in these signals;
SGFE may also serve as a harbinger for processing
methods that are abstracted from the time domain, which
may ultimately improve the feasibility of SCG utilization in
ambulatory and outpatient settings.

Index Terms—Seismocardiogram, dimensionality
reduction, autoencoder, cardiac monitoring, generative
modeling.

I. INTRODUCTION

ADVANCES in wearable sensing for outpatient monitoring
are revolutionizing both healthcare delivery and our un-

derstanding and treatment of disease. In particular, there are
now myriad ways to monitor heart health outside the clinic
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using wearable sensors. Among these, the seismocardiogram
(SCG) holds promise, particularly in monitoring diseases or
conditions affecting the mechanical aspects of cardiovascular
health and performance. The SCG measures the movement of the
chest wall in response to underlying cardiovascular events [1].
Most notably, valvular events such as aortic opening (AO) and
closing (AC) have been shown to occur concurrently with SCG
features, with high correlations established between cardiac
timing intervals measured with the SCG compared to reference
standards [2], [3]. These correlations enable inference of key in-
dicators of cardiomechanical function which derive from AO and
AC such as pre-ejection period (PEP), left-ventricular ejection
time (LVET), and pulse transit time (PTT) [4], [5]. Notably, the
role of such indicators in the diagnosis and management of car-
diovascular diseases including hypertention [6], heart failure [7],
[8], and coronary artery disease [9] has been well-studied.

Typically captured using a tri-axial accelerometer mounted to
the chest wall with concurrent ECG [10], [11], the application of
SCG in ambulatory and at-home environments has been limited.
By its nature, the morphology of the waveform is highly transient
in the time domain, influenced by the coupling of the vascular
system with the chest wall, the chest wall with the sensing
system, and by the patient’s physiological state. Consequently,
morphological variability poses a significant challenge in SCG
processing [12]. Furthermore, prior literature has shown that
SCG morphology varies with sensor position as well, requiring
the sensor to be placed properly to accurately estimate cardiome-
chanical indicators [12], [13].

The ultimate goal of this work is to develop a method of
SCG processing which adapts to the patient’s anatomy and
physiology as well as the position of the sensor for accurate
assessment of cardiomechanical indicators, namely rAO and
rAC — or the duration between the ECG R-peak and AO and AC
respectively. Doing so would not only improve the robustness
of SCG processing algorithms, but usability as well by not
requiring the user to move the sensor. Toward this goal, this
work proposes a new method of modeling SCG signals which
is summarized in Fig. 1.

To develop this approach, we begin with the perspective
that the cardiovascular system — governed by closed-loop
autonomic feedback — follows simple dynamic processes in
response to individual stimuli [14]. A dynamic process is one
that is governed by a set of rules, such that future states of
the system may be predicted from past states and the system’s
inputs [15]. Consider a patient undergoing an exercise stress test;
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Fig. 1. (a) Illustration of the consistent dynamics of the rAO and rAC interval during an exercise stress test. (b) Hemodynamic factors such
as rAO and rAC are among the generative factors of SCG signals. Other factors reflect the particular anatomy and physiology of the patient
and sensor position, which are static factors and do not change over time. (c) The SCG may be modeled as a stochastic sample from these
underlying generative factors. (d) The proposed SGFE maps SCG signals to a low-dimensional subspace by modeling them in this manner.
(e) SCG signals exhibit consistent dynamics in this learned subspace, however observed dynamics are dependent on sensor position. (f) Prior
work has demonstrated that SCG sensor position on the chest wall may be localized. (g) By applying position-specific regression to the learned
subspace, the hemodynamic factors rAO and rAC may be inferred independently from the other factors. Purple boxes indicate an unsupervised
model while orange boxes indicate a supervised mdoel. Equation numbers correspond to those in the text.

after beginning in a baseline resting state, the patient transitions
to a new equilibrium state upon the onset of exercise. When
the test is complete, the patient returns to their baseline state.
Fig. 1(a) illustrates this process in a state space defined by rAO
and rAC, which both decrease during exercise and increase
during recovery [16]. While the particular trajectory in this
state space in response to exercise may be patient-specific, the
dynamic behavior is largely preserved.

In this work, we model SCG signals as a stochastic sample
from an underlying dynamic process. Consider the process
above; if rAO and rAC were the only factors influencing the
SCG, this waveform could be losslessly-encoded by the two-
dimensional subspace of Fig. 1(a). In reality, the subspace which
defines SCG is likely dependent upon a variety of other cardio-
genic factors, requiring additional dimensions to achieve lossless
encoding [1], [12]. Furthermore, observed signals sampled from
this subspace may also be affected by other factors such as
the patient’s anatomy and physiology and sensor location on
the chest wall [17]. As shown in Fig. 1(b), the factors which
influence the generation of SCG signals are known as generative
factors [18], [19].

Though SCG morphology is highly variable, its hemody-
namic generative factors, such as rAO and rAC, follow con-
sistent dynamics; these observed signals may therefore exhibit
consistent behavior in subspaces defined by these factors [16]
as in Fig. 1(a). Mapping signals into these subspaces may
thereby enable analysis methods that are robust to morphological
variability. To do so, this work introduces the seismocardiogram
generative factor encoder (SGFE), which maps SCG signals into
a learned low-dimensional subspace (latent space) as illustrated
in Fig. 1(c)–(e). As will be shown, SCG signals exhibit consistent

behavior in this subspace despite morphological variability,
though they follow trajectories that are dependent on sensor
position. It is then shown that if sensor position is known,
a position-specific linear regression model can be applied to
the learned subspace of Fig. 1(e) to accurately estimate the
known generative factors rAO and rAC. With this approach,
one may estimate the hemodynamics underlying the SCG signal
independently from the other generative factors which affect
SCG morphology.

To enable this work, prior literature has demonstrated that
sensor location on the chest wall may be inferred from SCG
signals without user-calibration [20]; therefore, in this work
it is assumed that sensor position is known. Regarding SCG
modeling, previous studies have proposed principal compo-
nent analysis (PCA), independent component analysis (ICA),
and eigenvector decomposition as possible subspace mapping
methods for SCG processing [21]–[23]. Similar methods have
also been employed for other cardiovascular signals including
ECG and PPG for the purposes of noise reduction and feature
extraction [24], [25]. Notably, though, such methods do not
incorporate the dynamic behavior of these signals.

The purpose of this work is to formulate the SGFE and analyze
its ability to encode the known hemodynamic generative factors
rAO and rAC. In the following section, we introduce the SGFE,
first illustrating that SCG signals yield consistent trajectories in
the low-dimensional latent space of this model despite morpho-
logical variability. Subsequently, we will analyze whether this
subspace encodes useful information by characterizing its ability
to estimate changes in the rAO and rAC intervals. Finally, we will
show that consistent changes in subspace behavior due to sensor
placement enables algorithmic compensation when inferring AO
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and AC event timing using this subspace. The contributions of
this work include:

1) Introducing the SGFE as a method of inferring seismo-
cardiogram generative factors

2) Demonstrating that SCG waveforms follow consistent
patterns in low-dimensional subspace

3) Demonstrating algorithmic correction for sensor mis-
placement for generative factor inference.

II. METHODS

A. Notation

For brevity in the following sections, shorthand will be used
when describing matrices and vectors. Matrices in this work are
collections of row-wise vectors containing data from subsequent
observations in the time interval T := [1, T ]. Consider an ex-
ample T -by-M matrix of real numbers U ∈ RT×M . It can be
assumed that, U := [u�

1 . . .u
�
T ]

� where ut ∈ RM ∀t ∈ T . In
other words, U is composed of T vectors of length M , where
each vector ut is an observation at time t. Since this notation is
used frequently, the shorthand U := {u(M)}T is used. In any
such matrix, u(i,j) refers to the element of U in the ith row and
jth column while u

(i)
t refers to the ith element in vector ut.

Tuples, which are ordered sequences of objects, are indicated
by lists of variables enclosed by parentheses. For example, the
notationV := (U ,w) is used to define the variableV as a tuple
of the matrix U and vector w.

B. Mathematical Framework

Since the SCG derives from the chest wall’s response to
underlying events, we can abstract this signal as

F −→ RΦ(F | P ) −→ XP (1)

where F := {f (D)}T represents the hemodynamic generative
factors of the signal, R is a response function that generates the
waveform, and XP := {x(M)}T is the set of observed SCG
vectors from position P . The response function R is param-
eterized by Φ, which represents the static generative factors
related to the patient’s anatomy and physiology (Fig. 1(b)), and
is conditioned on the sensor position P. Under the assumption
that hemodynamic factors vary dynamically according to the
state of the cardiovascular system, the factors at each timestep
may be described as

(s0,Δ) −→ G(s0,Δ) −→ F (2)

where s0 ∈ RK is an initial state vector, Δ := {δ(L)}T repre-
sents changes in state at each point in the time period T , and G
is a generator function that produces hemodynamic generative
factors using this state information. Though the dimensionality
of F and the state variables s0 and Δ are in reality unknown,
acceptable values forD,K, andL in a computational model may
be inferred, as will be subsequently described. The implications
of modeling the SCG in this manner is that there may exist an
encoder function E such that

XP −→ EΦ(XP | P ) −→ (s0,Δ). (3)

Now consider that, given a set of observations XP generated
with Equation 1, we wish to approximate the factors F that
yielded these signals. Using Equations 2 and 3, this may be
accomplished via

XP → EΦ(XP | P ) → (s0,Δ) → G(s0,Δ) → F . (4)

While the functions E and G are unknown, learning functions
experimentally that approximate this behavior may allow infer-
ence of hemodynamic generative factors.

C. Model Architecture

This formulation naturally parallels the architecture of a
sequence-to-sequence VAE [26]. The proposed model for this
study is shown in Fig. 2(a). The input to the model is a sequence
X := {x(M)}T of T consecutive heartbeat-separated SCG sig-
nals with length M . Note that, for simplicity, the effect of sensor
position is omitted for the time being and will subsequently be
re-introduced.

To compress the signals, each signalxi ∈ X is processed with
the multi-layer convolutional network shown in Fig. 2(b). This
network is composed of N = 6 convolution blocks in series,
which convolve the signal with each of kn filters (kernels) of
length �n in the nth block with unit step. Convolutional networks
are commonly used in cardiovascular signal processing due to
the temporal dependence of time-series data [27]. The outputs
of each convolution layer are normalized before application of
an exponential linear unit (ELU) activation function [28], [29].
As was performed in [30], dropout regularization with a rate
of 0.2 is imposed on the output of the activation function [31].
Dimensionality reduction is induced by gradually decreasing
the number of filters (kn = [64, 64, 32, 32, 16, 16]) and max
pooling, which down-samples each signal by a factor of two. To
accommodate for shorter signals, the kernel length is also de-
creased (�n = [7, 5, 5, 3, 3, 2]). These parameters were derived
heuristically from [30], which explored dimensionality reduc-
tion of SCG signals with convolutional networks. Like most of
the model, the layers in this network are time-distributed, mean-
ing the same operation is performed for each signal xi ∈ X .

Before modeling the dynamics present in X , the outputs of
the compression network are flattened and passed through a
dense “read-in” layer with 64 input units, 2× (K + L) output
units, and rectified linear unit (ReLU) activation with dropout
regularization at a rate of 0.2. The read-in and read-out layers —
also called projection layers — exist because generative factors
may present differently as signal features across patients. Thus,
though the subspace defined by the generative factors may be
conserved, mapping into and out of this subspace may require
compensation for signal heterogeneity by fitting these layers
on a session-specific basis. In other words, the projection layers
capture anatomical and physiological differences — represented
by Φ in Equations 1, 3, and 4 — so that the dynamic model can
focus on inferring factors that are common to the population.

Modeling dynamics requires estimation of the initial state
s0 and change in state at each timestep Δ. As shown in
Fig. 2(c), the former is computed with a bi-directional long
short-term memory (LSTM) networkEZ , where the output is the
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Fig. 2. (a) Proposed seismocardiogram generative factor encoder (SGFE). Detailed descriptions are provided in the text. (b) The input X is
first processed by a compression network, which uses a series of N time-distributed convolution blocks to compress the input vector. Each 1-D
convolution layer n has kn kernels with length �n. A read-in layer encodes the resultant vector as inputs to the dynamic model. Two bi-directional
LSTM networks encode (c) the initial state of the system s0 and (d) the change in state with each timestep δt. (e) The generator network is an
LSTM network that outputs estimates of the generative factors at each timestep. The factors are passed through a read-out layer, which is used to
construct the estimate X̃ of the original input. (f) This is achieved with a decompression network, a mirror-image of the compression network. 1-D
= one-dimensional.

average between the final outputs of the forward and backward
layers [32]. Shown in Fig. 2(d), the latter is also computed
with a bi-directional LSTM network EΔ, where an output
δt is produced at each timestep as the average output be-
tween the forward and backward cells. However, since this is
a VAE instantiation, these values are not evaluated explicitly;
rather, they are drawn from a Gaussian distribution, the pa-
rameters of which are explicitly evaluated. Thus, the output
of EZ is a tuple (μ0,σ0), μ0,σ0 ∈ RK . The output of EΔ

at each timestep t ∈ T is a tuple (μδ,t,σδ,t), μδ,t,σδ,t ∈ RL.
The ith element of the initial state vector s0 is then sampled
from

s
(i)
0 ∼ N

(
μ
(i)
0 , σ

(i)
0

)
∀i ∈ [1,K]. (5)

where N (μ, σ) is a Gaussian distribution with mean μ and stan-
dard deviation σ. Similarly, at each timestep t, the jth element

of the state change vector δt is sampled from

δ
(j)
t ∼ N

(
μ
(j)
δ,t , σ

(j)
δ,t

)
∀j ∈ [1, L], t ∈ T . (6)

Note that each element in s0 and δt is drawn independently.
The probabilistic nature of the VAE yields a structured la-
tent space, as nearby points will produce inherently similar
outputs.

As shown in Fig. 2(e), the generator network estimates the
generative factors at each timestep based on the system state.
The generator is a uni-directional LSTM network, outputting a
vector of factors f t ∈ RD at each step t. As before, these factors
are passed through a read-out dense layer with D inputs and
64 outputs, which maps the generative factors to corresponding
signal features. Like the read-in layer, this mapping is learned
on a session-specific basis to account for changes in factor
manifestation as signal features.
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Finally, the translated factors are used to construct the output
signals X̃ := {x̃(M)}T with the decompression network shown
in Fig. 2(f). This is a mirror-image of the compression network
of Fig. 2(b), with the number and length of kernels applied in
the reverse order and up-sampling by a factor of two rather than
max pooling. The output of the decompression network is a
convolution layer with a single filter (k� = 1) with length �� =
�1 such that the output is a single vector at each timestep.

D. Human-Subject Experimental Protocol

Experimental data used in this study was collected under
two protocols approved by the Georgia Institute of Technology
Institutional Review Board (IRB). In the first protocol, SCG data
was collected from different locations on the chest wall during
exercise-recovery. In the second, SCG sensors were located on
the mid-sternum only, however the protocol featured a large
cohort of subjects. The latter was therefore used to train the
dynamic model and tune hyperparameters while the former was
used to test model performance.

1) Protocol 1: This protocol, explained in detail in [17],
included 10 healthy subjects (5 male, 5 female; age 24.7 ±
2.3 years; weight 70 ± 10.5 kg; height 170 ± 11.6 cm) and
was performed on two consecutive days. During the sessions,
electrocardiogram (ECG), impedance cardiogram (ICG), and
SCG signals were collected concurrently. On the first day, indi-
vidual accelerometers for SCG data collection were placed on
the mid-sternum, 7.5 cm to the right, and 7.5 cm to the left. On
the second day, SCG sensors were placed on the mid-sternum,
5 cm above, and 5 cm below. For each session, the subject stood
motionless for a 60 second rest period, followed by a stepping
exercise for 60 seconds, and concluding with a five-minute
recovery period during which the subject stood upright and
motionless. For consistency in this study, only data from the
first of the two sessions was used for SCG data from the central
sensor location. Furthermore, this study uses the notation C, L,
R, T, B to refer to the center, left, right, top, and bottom sensor
locations respectively.

2) Protocol 2: This protocol, explained in detail in [33],
included 36 healthy subjects (21 male, 15 female; age 24.7± 3.4
years; weight 68.5 ± 13.6 kg; height 170.9 ± 9.5 cm). SCG was
recorded with an accelerometer on the mid-sternum along with
reference ECG and ICG signals. As with the previous protocol,
the subjects began by standing upright and motionless for a
five-minute rest period; they then performed three minutes of
walking at 4.83 km/h on a treadmill followed by 90 seconds of a
squatting exercise; the protocol then concluded with the subject
again standing upright and motionless for a five-minute recovery
period.

E. Signal Pre-Processing

1) Noise Reduction: All signals were filtered with a band-
pass finite impulse response (FIR) filter with Kaiser window.
Cutoff frequencies were 0.5–40 Hz for the ECG, 1–30 Hz for
ICG, and 1–40 Hz for SCG [33]. During data collection, these
signals were sampled at 2000 Hz. For the SCG signals, only
the dorsoventral axis (z-axis) acceleration was used to minimize

network complexity, as this is considered the most useful axis
for SCG processing [4]. The signals were heartbeat-separated
using the R-peaks of the concurrent ECG signal as a reference.
It should be noted that the results in this work suppose access
to concurrent ECG, though prior work in this field has explored
ECG-free SCG segmentation [34]. All signal segments were
then abbreviated to a length of 800 samples (400 ms) before
being down-sampled to M = 256 samples using linear inter-
polation with an anti-aliasing filter. Note that a signal length
of 400 ms was sufficient to capture AC for this dataset due to
its focus on exercise recovery, during which LVET is low; this
may not hold true for other datasets, and signal length should
be adjusted accordingly. For each protocol and for each subject,
the dataset was windowed using a sliding window of 50 signal
segments with 50% overlap such that T = 50. All signal seg-
ments were then normalized to have zero mean and unit variance.
As the final step of processing, ICG and SCG signal segments
were smoothed using a rolling-window ensemble average of five
heartbeats to remove aberrant noise.

2) AO and AC Estimation: Reference values for AO and AC
were obtained from ICG B- and X-points respectively. The B-
point was computed as the point of maximum second derivative
occurring before the global maximum of the waveform; the
X-point was computed as the lowest signal minimum following
the global maximum [35]. While ICG is commonly used for
this purpose, the gold-standard for AO and AC estimation is
the echocardiogram; for this reason, the reference values ob-
tained from ICG are intended for use in this study as AO and
AC correlates rather than ground-truth measurements [36]. All
timing intervals were computed in reference to the respective
ECG R-peak for each heartbeat. Thus, rAO (PEP) and rAC refer
to the time in milliseconds between the ECG R-peak and AO
and AC respectively.

F. Loss Function and Training Protocol

The goal of training was to minimize the loss function

L = αMSE
(
X, X̃

)
+ β

[
D0 +

1

T

T∑
t=1

Dt

]
. (7)

The MSE operator computes the mean square error between X
and X̃ , specifically

MSE
(
X, X̃

)
=

1

MT

M∑
m=1

T∑
t=1

(x(t,m) − x̃(t,m))2. (8)

When calculating the reconstruction error, each target vector
xi ∈ X and output vector x̃j ∈ X̃ was normalized as will
be described below. The variables D0 and Dt in Equation 7
represent the Kullback-Leibler (KL) divergence, which is a
measure of similarity between two probability distributions. For
distributions P and Q, The KL divergence is given by

D(P‖Q) = −
∑
x

P (x) log

(
Q(x)

P (x)

)
. (9)
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In Equation 7, the variable D0 is given by

D0 =

K∑
k=1

D
(
N (0, 1)‖N

(
μ
(k)
0 , σ

(k)
0

))
(10)

and the variable Dt is similarly given by

Dt =

L∑
�=1

D
(
N (0, 1)‖N

(
μ
(�)
δ,t , σ

(�)
δ,t

))
. (11)

While the MSE term represents the reconstruction error, the
divergence terms impose a penalty on the distributions from
which s0 and Δ are sampled. This has two benefits for the
model. First, the size of the state space defined by s0 and Δ
is limited, as divergence from a zero-centered distribution with
unity variance will increase the KL divergence; this increases the
continuity of the latent space, as it is disadvantageous for inputs
from different sessions to cluster in different locations of the state
space. Second, this serves to disentangle the dimensions of the
state space, since redundancy in information encoded by each
variable may increase the KL divergence as well [37]. Increases
in KL divergence are tolerated only if they lead to a sufficient
decrease in reconstruction error.

The variables α and β in Equation 7 are scalars computed
during the first training step which normalize the value of each
term to 0.5. This serves to equalize the contribution of both terms
and express the loss at each epoch as a percentage of initial error
with random network weights.

Since the AO-related features in the first half of the signal
generally have a higher SNR than the AC-related features in the
second half, the first and second halves of each signal vector
were normalized separately with zero mean and unit variance.
If this normalization was not performed, the decrease in MSE
resulting from modeling AC-related features did not surpass the
increase in KL divergence penalty for doing so. Though this
method produced a discontinuity in the middle of each signal, it
has the benefit of not increasing the number of hyperparameters
parameters of the model as would be the case with other solutions
such as using a true β-variational scheme [37] or weighing the
MSE differently at each sample point. Furthermore, normalizing
the amplitude features has the benefit of preventing the model
from encoding amplitude features, which are not of interest in
this model [30].

The model was implemented in Keras with Tensorflow back-
end. The hardware setup was based on a 3.6 GHz Intel Core i7
7820X processor with a GeForce GTX 1080 Ti GPU. Train-
ing was performed using mini-batch stochastic gradient de-
scent [38]. At the beginning of each epoch — which repre-
sents a group of training steps in which all training samples
are incorporated — the training samples were randomized and
split into batches of 32 samples for each gradient computation.
The ADAM optimizer was used to compute gradient updates,
with initial learning rate 0.001, β1 = 0.9, β2 = 0.999, and
ε = 1.0× 10−7, which are the standard hyperparameters for this
optimizer [39]. The learning rate was decayed by a factor of 0.5
after each set of 10 consecutive epochs without achieving a new
minimum validation loss. Training was terminated after 30 such

consecutive epochs. This model required 95 minutes to train
using 9.3× 106 training samples.

During training, a simplifying assumption was made whereby
a single pair of projection layers was trained for all sessions in
the training set. Thus, data from all sessions was mixed together
at the beginning of each epoch. Subsequently, during testing,
session-specific projection layers were learned by freezing all
network weights besides those in the projection layers and re-
peating the same training protocol separately for each session in
the testing set. Learning session-specific projection layers for the
training set greatly increased computational complexity and did
not yield corresponding improvements in model performance,
so this was only performed during testing.

G. Dimensionality Estimation

Before modeling SCG dynamics, proper dimensionality for
the state variables s0 and Δ was estimated. The model in Fig. 2
was fitted with recovery-period data from the 36 subjects of
Protocol 2, training on 16 subjects, validating on 10, and testing
on 10. The value of β in Equation 7 was set to zero such that the
latent space was not arbitrarily regularized. As a starting point,
the values of K and L were both set to 10, and D was set to 20.
In this study, D was always set to K + L such that the generator
network did not additionally perform dimensionality reduction
or expansion.

After training, the vector s0 and matrix Δ were computed
for each sample in the testing set. Concatenating the former
across testing samples yielded a matrix S0 ∈ RN×K where N
is the number of testing samples. The dimensionality of the
initial state was estimated by performing PCA on the matrix
S0 and returning the variance explained by each resultant PCA
dimension, of which there were K [40].

Note that Δ returns a vector at δt each timestep t ∈ T , and
thus Δ ∈ RT×L for each testing sample. Therefore, for each
timestep t, the vector δt was concatenated across testing samples
to yield T matrices Δt ∈ RN×L. PCA was performed on each
matrix Δt and the variance explained by each PCA dimension
was calculated. For each dimension, the variance explained was
averaged across each timestep to compute the mean variance
explained across time. To determine the dimensionality of s0
andΔ used in this study, a cutoff of 10% variance explained was
used, as additional dimensions would increase the complexity
of the model without yielding significant increases in explained
variance.

H. Training and Testing Dynamic Model

The model in Fig. 2 was trained using the exercise-recovery
period data from each of the 36 subjects in Protocol 2. To focus
the modeling on dynamic processes, resting period data was not
used. A total of 10 subjects in the training set were selected at
random for validation and thereby removed from the training set.
Based on results from the previous section, the dimensionality
parameters K and L were set to 4 and the parameter D was
therefore set to 8.

After training, all network weights save for those in the pro-
jection layer were frozen. The model was then trained separately
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on data from each subject and sensor position in the testing set.
This consisted of data from the 10 subjects in Protocol 1 with five
position-specific sessions each, leading to 50 session-specific
pairs of projection layers with universal compression, dynamic,
and decompression networks. Therefore, though the subspace
defined by generative factors remained constant, projection into
and out of this subspace was learned on a session-specific basis.
For each testing sample, data collected included s0, Δ, F , and
X̃ .

Held-out validation was not used for learning session-specific
projection layers in the testing set. This is because the SGFE is a
fully-unsupervised model, meaning that for practical implemen-
tation, it is a reasonable assumption that data collected from the
patient may be used to update the model and infer generative
factors concurrently. Furthermore, since the projection layers
accounted for approximately 1% of network parameters (1096 of
103169 total), this enabled rapid training of the session-specific
projections, supporting that this approach is reasonable for
quasi-real-time feedback systems.

I. Visualizing Behavior of Subspace Projections

For visual analysis of subspace behavior, the goal of the
following method was to identify the pair of dimensions in the
learned subspace F that encoded the most consistent linear tra-
jectories. Linear trajectories were expected to arise in the latent
space because, as will be illustrated, AO and AC were found
experimentally to follow linear trends in exercise-recovery when
plotted against one another.

To do so, for each session in the test set defined by the subject
S ∈ [1, 10] and sensor position P ∈ {C,L,R,T,B}, the sub-
space projectionF ∈ RT×D for each ofNS,P samples in the ses-
sion was concatenated to form the matrixF S,P ∈ RTNS,P×D. In
this manner, each matrixF S,P contained the subspace encoding
of all data for one of the 50 sessions in the test set. These matrices
were further concatenated row-wise across all subjects to form
the matrix F P for each sensor position. Thus, F P contained the
subspace encoding of all data from sessions from a particular
sensor position.

The following was then performed for all P . For each pair
of column vectors (f i,f j) ∈ F P , i �= j, linear regression was
used to find the optimal linear fit between f i and f j . The pair
i, j in which the coefficient of determination (R2) of the linear fit
averaged across all P was maximal was selected as the optimal
axis pair for further analysis [41]. Subspace trajectories were
visualized by plotting the resultant vectors f1 and f2 against
one another.

Though this method is useful in identifying hyperplanes in
the learned subspace in which trajectories are consistent, this
does not necessarily mean that the information encoded in
the hyperplane is useful and that the two dimensions simply
covary despite attempts at disentanglement. Therefore, a second
qualitative analysis was performed to determine whether the
identified dimensions may contain useful information about the
known generative factors AO and AC. For five of the 10 subjects
in the testing set chosen at random, the ICG-derived rAO interval
was plotted against the rAC interval on a scatter plot for the first

of the two recording sessions. Best-fit lines were then overlaid
on data from each subject to better visualize the trajectories of
these intervals. For the same subjects, the subspace projections
f1 and f2 from the same session for the central sensor location
were plotted on a scatter plot. Best-fit lines were again overlaid
on the subspace encoding for each patient in order to observe
whether changes in rAO/rAC trajectories may be reflected by
the identified dimensions.

J. Visualizing Sensor Location Effect on
Observed Dynamics

Though the hyperplane defined by f1 and f2 may be a
suitable subspace in which to observe the consistent dynam-
ics of SCG signals, it may be sub-optimal for visualizing the
effects of changing sensor state on observed dynamics. To
do so more effectively, PCA was used to find an informative
three-dimensional representation of the the subspace F , and the
average trajectory for each of the five sensor positions was then
plotted in these PCA dimensions for visualization.

To do so, the matrix F P was concatenated across positions to
form F tot ∈ RTNtot×D where Ntot is the total number of samples
in the testing set. The matrix F tot thus contained the subspace
projections for all samples in the testing set. PCA was then per-
fomed onF tot to obtain the transformationA ∈ RD×D mapping
dimensions ofF tot into the orthogonal subspace defined by PCA
dimensions.

The following was then performed for each matrix F S,P ,
which contained the subspace encoding for the session with sub-
ject S and positionP . Each of the 10 matrices F S,P , S ∈ [1, 10]
was averaged elementwise to obtain a session-averaged matrix
F̄ P . F̄ P thereby contained the subspace encoding for position
P averaged across all subjects. Subsequently, this matrix was
transformed using the matrix A to obtain AP = F̄ PA, the
projection of F̄ P in the PCA subspace. Finally, for each position,
the first three dimensions of AP were then plotted on a scatter
plot for visualization.

K. Evaluating Generative Factor Inference

Based on the results of qualitative analysis, quantitative anal-
ysis was performed to determine the extent to which the learned
subspace F encodes known generative factors derived from the
ICG reference. Since VAE models are fully-unsupervised, gen-
erative factors may not necessarily correspond to the dimensions
of the latent space in a one-to-one manner; rather, such factors
may be encoded by combinations of dimensions. Because of
this, we instead apply transformations to the latent space to better
estimate generative factors.

In this work, linear regression was used to infer ICG-derived
AO and AC event timing using the learned subspace dimensions.
As shown in Fig. 1(g), this method identified a linear mapping
from the dimensions of F to known generative factors. To begin
with, a separate linear mapping was learned for each sensor
position P and with each of the 10 subjects in the testing set
held-out. To do so, least-squares regression was used to solve

XP,S̄ = argmin
X

‖Y P,S̄ − F P,S̄X‖22 (12)
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where F P,S̄ is the matrix F P with the subject S held-out and
Y P,S̄ is a matrix where each column is a vector of known
generative factor values corresponding to each row ofF P,S̄ . The
columns of Y P,S̄ thus contained the ICG-derived rAO and rAC
intervals respectively. This process was performed for each of the
five sensor positions and with each of the 10 subjects held-out.
Once the mapping XP,S̄ was learned for each held-out subject,
it was used to obtain predictions from the held-out subject such
that

Ỹ P,S = F P,SXP,S̄ (13)

where Ỹ P,S is a vector of predicted generative factors for subject
S with sensor position P . The R2 and root-mean-square error
(RMSE) were obtained for the predicted factors Ỹ P,S versus
the known generative factors Y P,S after each session, and the
performance results were plotted for each sensor position [40].

L. Quantifying Sensor Location Effect on
Subspace Encoding

If alterations in sensor state have predictable effects on ob-
served dynamics, this would mean that the mapping from the
latent space F to the generative factors would perform strongly
for signals from a single position, but sub-optimally for others.
Consequently, if sensor placement was known, this would allow
algorithmic compensation for sensor placement when inferring
generative factors. To observe this effect, the following was
calculated for each pair of positions Pi, Pj ∈ P and subject S:

Ỹ (i,j),S = F Pi,SXPj ,S̄ (14)

where Pi is the position being tested and the mapping was
trained using data fromPj . For each session — corresponding to
subjectS and sensor locationPi — the R2 was obtained between
Ỹ (i,j),S andY Pi,S for both the rAO and rAC intervals, where the
former is the model’s estimate and the latter is the ICG-derived
reference values. The result was then averaged across subjects
to yield the matrices Ỹ AO, Ỹ AC ∈ R5×5, where each element
ỹ(i,j) was the average R2 across subjects for sensor data from
position Pi with a mapping trained using data from position Pj .
The performance matrices Ỹ AO and Ỹ AC were then plotted as
confusion matrices to visualize changes in performance when
using different position-specific mappings for testing data from
each position.

III. RESULTS AND DISCUSSION

A. Dimensionality Estimation

Fig. 3 shows the variance explained by PCA dimensions for
s0 and Δ. Notably, after the first four PCA dimensions, the
variance explained by additional dimensions of s0 orΔ does not
exceed 10%. Therefore, by limiting the dimensionality of these
vectors to 4, the complexity of the network is reduced without
sacrificing the ability to encode information that substantially
impacts signal reconstruction.

Dimensionality selection presents an essential trade-off in
autoencoder architectures. Low dimensionality of the latent
layers both reduces network complexity — limiting the number

Fig. 3. Percent variance explained by each PCA dimension for model
trained using K = 10, L = 10 with β = 0. Results are shown for initial
state vector s0 (blue), and state change matrix Δ (red) using logarithmic
axis.

of parameters that must be learned while increasing generaliz-
ability — and compels each dimension to encode more useful
attributes, in terms of variance explained. On the other hand, lim-
iting dimensionality too severely may inhibit the network from
adequately reconstructing the signal, and thus small variations
that may nevertheless be important in encoding factors such as
sensor state may not be represented in the latent space [42]. For
this reason, the selected dimensionality may not generalize to
applications in which encoding of more minute changes in SCG
morphology is required.

Along these lines, while the chosen dimensionality was ad-
equate for sensor state encoding, the results in Fig. 3 do not
necessarily indicate that the process underlying SCG generation
is inherently low-dimensional. During the dynamic process of
exercise-recovery explored in this work, variance in the SCG
waveform is likely driven by key factors such as valvular event
timing, which may lead the contribution of other factors to be
understated. In other applications and during other processes,
the dimensionality of the latent space for effective computational
modeling may increase or decrease.

B. Visualizing Behavior of Subspace Projections

Subspace projections of SCG signals for two subjects during
exercise-recovery are shown in Fig. 4. From the first and last
columns of the figure, it is apparent that signal morphology
between the subjects — and even at different sensor locations for
the same subject — often varies substantially. This time-domain
variability is juxtaposed with trajectories in the learned subspace
which are largely conserved. Specifically, the subspace projec-
tion of the signal during this period follows an approximately
linear trajectory in the reference frame defined by the selected
subspace dimensions f1 and f2.

This consistency is essential because it suggests that this
subspace encodes features that are common to SCG signals
despite apparent morphological differences. As aforementioned,
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Fig. 4. Subspace projections of recovery-period SCG data for two subjects. The rows of the figure represent each of the five different sensor
positions. The left and right columns show a subset of the amplitude-normalized SCG data from Subjects 1 and 2 respectively, with the second and
third columns showing the corresponding subspace trajectories in green and blue respectively. The axes represent learned subspace dimensions
f1 and f2; gray points in the figure represent subspace projections with the same sensor position from the remaining patients in the testing set.
Trajectory directions are overlaid (black, dotted). A.U. = arbitrary units.

this is made possible by the session-specific projection layers,
which encode the translation between estimated generative fac-
tors and time-domain signal features. In this manner, anatomical
heterogeneity is captured by the projection into and out of
this subspace, and not by the subspace itself. Such a result
suggests that constructing models which incorporate rather than
eschew patient-specific heterogeneity may consistently model
underlying patterns.

With regards to practically implementing such a system, it
is important to note that this subspace projection was learned
in a fully-unsupervised manner. Therefore, it is reasonable to
assume that such patient-specific tuning of the model for optimal

performance will be feasible in practical systems: the projec-
tion may be learned passively without any labeled training
data. Furthermore, approximately 1% of model parameters were
contained by the projection layers, which may enable rapid
training in quasi-real-time systems. While training the full model
required approximately five hours with this dataset and hardware
setup, fitting session-specific projection layers was typically
achieved in less than three minutes.

An example of the relationship between ICG-derived rAO and
rAC and the learned subspace dimensions f1 and f2 is shown in
Figs. 5(a) and (b). Fig. 5(a) shows the trajectories in the subspace
defined by rAO and rAC for each subject, while Fig. 5(b) shows
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Fig. 5. (a) ICG-derived AO and AC points during exercise-recovery for five subjects in the test set, with each subject assigned a different color.
AO and AC are shown as scatter points; best-fit lines for the scatter points are overlaid as dashed lines. (b) Subspace trajectories in dimensions f1
and f2 from centrally-placed sensors for the same subjects with the same color-coding as in (a). Subspace projections are shown as scatter points
with best-fit lines overlaid as dashed lines. (c) Trajectories in PCA dimensions of F for SCG signals from each of the five sensor positions averaged
across all subjects. From lightest to darkest shading, the positions include center, left, right, top, and bottom. The trajectories are also indicated with
black dashed lines.

the corresponding trajectories in the subspace defined by f1 and
f2. In Fig. 5(a), the linear dynamics are apparent; while the
trajectories are similar for most patients, one of the patients in
this set — shown in purple — has a trajectory which differs
visibly from the others. This difference is reflected in Fig. 5(b),
which shows a corresponding change in trajectory in the learned
subspace. The qualitative results shown in Figs. 4 and 5(a)–(b)
serve to visually demonstrate what will be shown quantitatively
in the following sections. To enable robust generative factor
inference, subspace trajectories for similar processes must be
consistent, and changes in underlying generative factors must
be reflected in the learned subspace.

C. Visualizing Sensor Location Effect on
Observed Dynamics

While the dimensions f1 and f2 demonstrate consistent tra-
jectories for all positions, they may not best illustrate changes
in observed dynamics associated with sensor location. Fig. 5(c)
shows the session-averaged trajectories for each of the five sen-
sor positions in the first three PCA dimensions of F . The figure
illustrates that each of the sensor positions has a characteristic,
distinguishable trajectory in the subspace. Changing the position
of the SCG sensor is akin to altering the reference frame from
which the underlying hemodynamic process is observed. This
is reflected in Fig. 5(c): though the trajectories observed at
each position are consistently linear, their direction varies with
the change in reference frame. As will be shown, predictable
changes in these trajectories allow for correcting the altered ref-
erence frame algorithmically when inferring generative factors,
mitigating the effect of sensor position on observed dynamics.

D. Evaluating Generative Factor Inference

The performance of position-specific linear mappings for rAO
and rAC inference from the learned subspace F is shown in
Figs. 6(a) and (b). Fig. 6(a) shows that these mappings produced
values that correlated strongly with ICG-derived intervals. Ad-
ditionally, Fig. 6(b) shows the RMSE between estimated and
reference values for the generative factors.

Notably, while the R2 values for rAO only slightly exceed
those for rAC, the RMSE of the estimated rAO is significantly
lower than that of rAC. This indicates that while the learned
subspace F effectively encoded changes in rAO and rAC, the
precise value of rAC had a larger offset versus the ICG reference.
This is unsurprising, since the signal features corresponding
to AC generally have lower energy, often causing ambiguity
for precise AC identification. Beyond demonstrating accurate
asseessment of rAO and rAC, Figs. 6(a) and (b) demonstrate
that the latent space of the SGFE model contains information on
measurable physical phenomena.

The RMSE for rAO estimation shown in Fig. 6(b) is within
acceptable limits for all sensor positions, which in prior work
typically falls between 11–18 ms compared to ICG-derived
reference values [33]. For instance, [13] used XGBoost re-
gression on an ad hoc feature set to estimate rAO using SCG
sensors in four different sensor locations, achieving RMSE
values from 11.6(±0.4) ms to 17.1(±0.6)ms using z-axis ac-
celeration. Recently, [33] used a similar method to achieve
an RMSE of 11.46(±0.32) ms from centrally-placed sensors
fusing multiple accelerometer and gyroscope axes. As shown in
Fig. 6(b), the RMSE for this task ranged from 7.23(±1.54) ms
to 10.53(±1.11) ms in this work. Regarding rAC estimation, the
RMSE was larger than for rAO when expressed in miliseconds;
however, since the rAC interval is much longer than rAO, the
error in rAC estimation relative to its magnitude was comparable
to that of rAO. This is reflected in Fig. 6(a), which shows a more
comparable R2 between estimated and true rAO and rAC, with
values in the range 0.81–0.90 for rAO and 0.72–0.83 for rAC.

Though the results in Figs. 6(a) and (b) show that some sensor
locations achieved somewhat higher performance than others, it
is important to note that the optimal sensor location for rAO and
rAC estimation is likely an idiosyncracy dependent upon the
processing method or perhaps even the dataset being used. For
instance, Fig. 6(b) suggests that the lower-sternum sensor place-
ment is optimal for rAO estimation while [13] achieved highest
performance under the left clavicle. Finally, it is important to
note that ICG is not the gold-standard reference for AO and AC
event timing; therefore, the results in Fig. 6(b) do not necessarily
reflect the true error of the estimated generative factors.
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Fig. 6. (a) R2 and (b) RMSE between ICG-derived rAO (blue) and rAC (red) and estimations from the learned subspace F using position-specific
linear mappings (x-axis) on held-out subjects. (c) Scatter plot of ICG-derived vs. estimated rAO for one subject with sensors placed in the center
(black), left (blue), and right (green) locations using the linear mapping trained on centrally-placed SCG data. 1:1 correspondence line is overlaid
(black, dashed). (d) Confusion matrix of average R2 for rAO estimation for all held-out subjects for a specific sensor position (y-axis) derived using
linear mappings trained on a specific position (x-axis). Analogous results for rAC estimation are shown in (e) and (f).

E. Quantifying Sensor Location Effect on
Subspace Encoding

Figs. 6(c)–(f) show the effect of sensor position on the en-
coding of known generative factors in the learned subspace.
Figs. 6(c) and (e) show that rAO and rAC estimates correlate
more consistently with the ICG-derived values when the proper
position-specific mapping is used. Figs. 6(d) and (f) illustrate
this effect for all subjects in the testing set and with all sensor
position and linear mapping combinations. This result corrob-
orates Fig. 5(c) in suggesting that subspace trajectories from
a particular position are more similar to those from the same
position than to others; therefore, if the position is known, the
proper linear mapping XP can be applied to the subspace F to
obtain estimates of the generative factors. In effect, modeling
sensor position as a generative factor as shown in Fig. 1(b)
enables adaptation to sensor placement by removing the bias
in observed dynamics introduced by the sensor’s position.

Notably, mismatching the linear model to the true sensor
position in Figs. 6(c) and (e) still yielded generative factor esti-
mates that followed the same general trend, though the variance
of these trends was higher. This may be because the linear
mapping is primarily driven by dimensions in which dynamics
are consistent such as f1 and f2 in Fig. 4 while the remaining
dimensions are used for fine-tuning these estimates.

The above results demonstrate the final step for algorithmic
correction of sensor misplacement for rAO and rAC inference.
After reducing the dimensionality of SCG signals with SGFE,
selecting a position-specific regression model between the latent
space and rAO and rAC enables improved estimation of these
parameters, as shown in Figs. 6(d) and (e). These results also
highlight the clinical application of this work: by inferring
these indicators in a manner that is robust to changes in SCG

morphology and sensor position, the practicality of using SCG
in healthcare settings may be improved.

F. Limitations and Future Work

To achieve the potential clinical applications of this work,
future studies should first explore how to optimize this model
for rAO and rAC estimation; as optimization of deep learning
models is a complex process and largely dependent on the nature
of the dataset, this procedure and discussion should be explored
at length in future studies. As the focus of this work was model
formulation rather than optimization, these hyperparameters
were derived heuristically from the results in [30]. Future work
should also compare the performance of SGFE-based models to
existing methods of rAO and rAC estimation in outpatient and
clinical environments and, if possible, employ echocardiography
as a gold-standard reference in lieu of ICG. While the sample size
of this study was designed for validation of the model, compar-
isons against other methods will require both optimization of the
model and a larger cohort of subjects. More broadly, a key avenue
of future work is exploring the role of SCG generative factor
modeling in the diagnosis and assessment of disease states. In
particular, the underlying dynamics of SCG signals may vary in
heart failure patients compared to healthy controls. Elucidating
differences in these dynamics may yield a deeper understanding
of the effect of heart failure on SCG signals [7], [8].

IV. CONCLUSION

In seeking to improve the usability of SCG signals in clinical
and outpatient environments, this work presented a new method
of modeling SCG signals using dynamic and generative model-
ing. It was shown that SCG signals exhibit consistent behavior
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in low dimensions despite morphological variability. Harness-
ing this result enabled the inference of key cardiomechanical
indicators while adapting to inter-subject variability and sensor
misplacement. Ultimately, developing SCG processing methods
which are robust to these factors may better enable the noninva-
sive assessment of cardiomechanical function for the diagnosis
and management of cardiovascular disease.
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